Copied to
clipboard

G = C52⋊C16order 400 = 24·52

The semidirect product of C52 and C16 acting via C16/C2=C8

metabelian, soluble, monomial, A-group

Aliases: C52⋊C16, (C5×C10).C8, C2.(C52⋊C8), C524C8.C2, C526C4.1C4, SmallGroup(400,116)

Series: Derived Chief Lower central Upper central

C1C52 — C52⋊C16
C1C52C5×C10C526C4C524C8 — C52⋊C16
C52 — C52⋊C16
C1C2

Generators and relations for C52⋊C16
 G = < a,b,c | a5=b5=c16=1, ab=ba, cac-1=ab2, cbc-1=ab-1 >

2C5
2C5
2C5
25C4
2C10
2C10
2C10
25C8
10Dic5
10Dic5
10Dic5
25C16
10C5⋊C8
10C5⋊C8
10C5⋊C8

Character table of C52⋊C16

 class 124A4B5A5B5C8A8B8C8D10A10B10C16A16B16C16D16E16F16G16H
 size 112525888252525258882525252525252525
ρ11111111111111111111111    trivial
ρ211111111111111-1-1-1-1-1-1-1-1    linear of order 2
ρ31111111-1-1-1-1111-iiii-i-i-ii    linear of order 4
ρ41111111-1-1-1-1111i-i-i-iiii-i    linear of order 4
ρ511-1-1111-i-iii111ζ8ζ87ζ83ζ83ζ85ζ85ζ8ζ87    linear of order 8
ρ611-1-1111-i-iii111ζ85ζ83ζ87ζ87ζ8ζ8ζ85ζ83    linear of order 8
ρ711-1-1111ii-i-i111ζ87ζ8ζ85ζ85ζ83ζ83ζ87ζ8    linear of order 8
ρ811-1-1111ii-i-i111ζ83ζ85ζ8ζ8ζ87ζ87ζ83ζ85    linear of order 8
ρ91-1i-i111ζ166ζ1614ζ1610ζ162-1-1-1ζ16ζ167ζ1611ζ163ζ1613ζ165ζ169ζ1615    linear of order 16
ρ101-1i-i111ζ166ζ1614ζ1610ζ162-1-1-1ζ169ζ1615ζ163ζ1611ζ165ζ1613ζ16ζ167    linear of order 16
ρ111-1i-i111ζ1614ζ166ζ162ζ1610-1-1-1ζ165ζ163ζ167ζ1615ζ16ζ169ζ1613ζ1611    linear of order 16
ρ121-1i-i111ζ1614ζ166ζ162ζ1610-1-1-1ζ1613ζ1611ζ1615ζ167ζ169ζ16ζ165ζ163    linear of order 16
ρ131-1-ii111ζ1610ζ162ζ166ζ1614-1-1-1ζ167ζ16ζ1613ζ165ζ1611ζ163ζ1615ζ169    linear of order 16
ρ141-1-ii111ζ1610ζ162ζ166ζ1614-1-1-1ζ1615ζ169ζ165ζ1613ζ163ζ1611ζ167ζ16    linear of order 16
ρ151-1-ii111ζ162ζ1610ζ1614ζ166-1-1-1ζ1611ζ1613ζ169ζ16ζ1615ζ167ζ163ζ165    linear of order 16
ρ161-1-ii111ζ162ζ1610ζ1614ζ166-1-1-1ζ163ζ165ζ16ζ169ζ167ζ1615ζ1611ζ1613    linear of order 16
ρ1788003-2-200003-2-200000000    orthogonal lifted from C52⋊C8
ρ188800-2-230000-2-2300000000    orthogonal lifted from C52⋊C8
ρ198800-23-20000-23-200000000    orthogonal lifted from C52⋊C8
ρ208-800-23-200002-3200000000    symplectic faithful, Schur index 2
ρ218-8003-2-20000-32200000000    symplectic faithful, Schur index 2
ρ228-800-2-23000022-300000000    symplectic faithful, Schur index 2

Smallest permutation representation of C52⋊C16
On 80 points
Generators in S80
(1 34 75 60 17)(2 76 18 35 61)(3 62 36 19 77)(4 37 78 63 20)(5 21 64 79 38)(6 49 39 22 80)(7 65 23 40 50)(8 24 51 66 41)(9 42 67 52 25)(10 68 26 43 53)(11 54 44 27 69)(12 45 70 55 28)(13 29 56 71 46)(14 57 47 30 72)(15 73 31 48 58)(16 32 59 74 33)
(1 60 34 17 75)(2 61 35 18 76)(3 19 62 77 36)(4 20 63 78 37)(5 79 21 38 64)(6 80 22 39 49)(7 40 65 50 23)(8 41 66 51 24)(9 52 42 25 67)(10 53 43 26 68)(11 27 54 69 44)(12 28 55 70 45)(13 71 29 46 56)(14 72 30 47 57)(15 48 73 58 31)(16 33 74 59 32)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)

G:=sub<Sym(80)| (1,34,75,60,17)(2,76,18,35,61)(3,62,36,19,77)(4,37,78,63,20)(5,21,64,79,38)(6,49,39,22,80)(7,65,23,40,50)(8,24,51,66,41)(9,42,67,52,25)(10,68,26,43,53)(11,54,44,27,69)(12,45,70,55,28)(13,29,56,71,46)(14,57,47,30,72)(15,73,31,48,58)(16,32,59,74,33), (1,60,34,17,75)(2,61,35,18,76)(3,19,62,77,36)(4,20,63,78,37)(5,79,21,38,64)(6,80,22,39,49)(7,40,65,50,23)(8,41,66,51,24)(9,52,42,25,67)(10,53,43,26,68)(11,27,54,69,44)(12,28,55,70,45)(13,71,29,46,56)(14,72,30,47,57)(15,48,73,58,31)(16,33,74,59,32), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)>;

G:=Group( (1,34,75,60,17)(2,76,18,35,61)(3,62,36,19,77)(4,37,78,63,20)(5,21,64,79,38)(6,49,39,22,80)(7,65,23,40,50)(8,24,51,66,41)(9,42,67,52,25)(10,68,26,43,53)(11,54,44,27,69)(12,45,70,55,28)(13,29,56,71,46)(14,57,47,30,72)(15,73,31,48,58)(16,32,59,74,33), (1,60,34,17,75)(2,61,35,18,76)(3,19,62,77,36)(4,20,63,78,37)(5,79,21,38,64)(6,80,22,39,49)(7,40,65,50,23)(8,41,66,51,24)(9,52,42,25,67)(10,53,43,26,68)(11,27,54,69,44)(12,28,55,70,45)(13,71,29,46,56)(14,72,30,47,57)(15,48,73,58,31)(16,33,74,59,32), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80) );

G=PermutationGroup([[(1,34,75,60,17),(2,76,18,35,61),(3,62,36,19,77),(4,37,78,63,20),(5,21,64,79,38),(6,49,39,22,80),(7,65,23,40,50),(8,24,51,66,41),(9,42,67,52,25),(10,68,26,43,53),(11,54,44,27,69),(12,45,70,55,28),(13,29,56,71,46),(14,57,47,30,72),(15,73,31,48,58),(16,32,59,74,33)], [(1,60,34,17,75),(2,61,35,18,76),(3,19,62,77,36),(4,20,63,78,37),(5,79,21,38,64),(6,80,22,39,49),(7,40,65,50,23),(8,41,66,51,24),(9,52,42,25,67),(10,53,43,26,68),(11,27,54,69,44),(12,28,55,70,45),(13,71,29,46,56),(14,72,30,47,57),(15,48,73,58,31),(16,33,74,59,32)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)]])

Matrix representation of C52⋊C16 in GL8(𝔽241)

0240100000
0240010000
0240000000
1240000000
97341042400001
119548824240240240240
97341042401000
97341042400100
,
2401000000
2400100000
2400010000
2400000000
130145200400010
130145200400001
15216518465240240240240
130145200401000
,
0000240100
0000240010
0000240001
222022525239240240240
125425343314424040
22201921403314424040
141115103173314424040
52233401563314424040

G:=sub<GL(8,GF(241))| [0,0,0,1,97,119,97,97,240,240,240,240,34,54,34,34,1,0,0,0,104,88,104,104,0,1,0,0,240,24,240,240,0,0,0,0,0,240,1,0,0,0,0,0,0,240,0,1,0,0,0,0,0,240,0,0,0,0,0,0,1,240,0,0],[240,240,240,240,130,130,152,130,1,0,0,0,145,145,165,145,0,1,0,0,200,200,184,200,0,0,1,0,40,40,65,40,0,0,0,0,0,0,240,1,0,0,0,0,0,0,240,0,0,0,0,0,1,0,240,0,0,0,0,0,0,1,240,0],[0,0,0,22,125,2,141,52,0,0,0,20,42,220,115,233,0,0,0,225,53,192,103,40,0,0,0,25,4,140,17,156,240,240,240,239,33,33,33,33,1,0,0,240,144,144,144,144,0,1,0,240,240,240,240,240,0,0,1,240,40,40,40,40] >;

C52⋊C16 in GAP, Magma, Sage, TeX

C_5^2\rtimes C_{16}
% in TeX

G:=Group("C5^2:C16");
// GroupNames label

G:=SmallGroup(400,116);
// by ID

G=gap.SmallGroup(400,116);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-5,5,12,31,50,10564,490,496,9797,2891,2897]);
// Polycyclic

G:=Group<a,b,c|a^5=b^5=c^16=1,a*b=b*a,c*a*c^-1=a*b^2,c*b*c^-1=a*b^-1>;
// generators/relations

Export

Subgroup lattice of C52⋊C16 in TeX
Character table of C52⋊C16 in TeX

׿
×
𝔽