metabelian, soluble, monomial, A-group
Aliases: C52⋊C16, (C5×C10).C8, C2.(C52⋊C8), C52⋊4C8.C2, C52⋊6C4.1C4, SmallGroup(400,116)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C52 — C5×C10 — C52⋊6C4 — C52⋊4C8 — C52⋊C16 |
C52 — C52⋊C16 |
Generators and relations for C52⋊C16
G = < a,b,c | a5=b5=c16=1, ab=ba, cac-1=ab2, cbc-1=ab-1 >
Character table of C52⋊C16
class | 1 | 2 | 4A | 4B | 5A | 5B | 5C | 8A | 8B | 8C | 8D | 10A | 10B | 10C | 16A | 16B | 16C | 16D | 16E | 16F | 16G | 16H | |
size | 1 | 1 | 25 | 25 | 8 | 8 | 8 | 25 | 25 | 25 | 25 | 8 | 8 | 8 | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 25 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -i | i | i | i | -i | -i | -i | i | linear of order 4 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | i | -i | -i | -i | i | i | i | -i | linear of order 4 |
ρ5 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -i | -i | i | i | 1 | 1 | 1 | ζ8 | ζ87 | ζ83 | ζ83 | ζ85 | ζ85 | ζ8 | ζ87 | linear of order 8 |
ρ6 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -i | -i | i | i | 1 | 1 | 1 | ζ85 | ζ83 | ζ87 | ζ87 | ζ8 | ζ8 | ζ85 | ζ83 | linear of order 8 |
ρ7 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | i | i | -i | -i | 1 | 1 | 1 | ζ87 | ζ8 | ζ85 | ζ85 | ζ83 | ζ83 | ζ87 | ζ8 | linear of order 8 |
ρ8 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | i | i | -i | -i | 1 | 1 | 1 | ζ83 | ζ85 | ζ8 | ζ8 | ζ87 | ζ87 | ζ83 | ζ85 | linear of order 8 |
ρ9 | 1 | -1 | i | -i | 1 | 1 | 1 | ζ166 | ζ1614 | ζ1610 | ζ162 | -1 | -1 | -1 | ζ16 | ζ167 | ζ1611 | ζ163 | ζ1613 | ζ165 | ζ169 | ζ1615 | linear of order 16 |
ρ10 | 1 | -1 | i | -i | 1 | 1 | 1 | ζ166 | ζ1614 | ζ1610 | ζ162 | -1 | -1 | -1 | ζ169 | ζ1615 | ζ163 | ζ1611 | ζ165 | ζ1613 | ζ16 | ζ167 | linear of order 16 |
ρ11 | 1 | -1 | i | -i | 1 | 1 | 1 | ζ1614 | ζ166 | ζ162 | ζ1610 | -1 | -1 | -1 | ζ165 | ζ163 | ζ167 | ζ1615 | ζ16 | ζ169 | ζ1613 | ζ1611 | linear of order 16 |
ρ12 | 1 | -1 | i | -i | 1 | 1 | 1 | ζ1614 | ζ166 | ζ162 | ζ1610 | -1 | -1 | -1 | ζ1613 | ζ1611 | ζ1615 | ζ167 | ζ169 | ζ16 | ζ165 | ζ163 | linear of order 16 |
ρ13 | 1 | -1 | -i | i | 1 | 1 | 1 | ζ1610 | ζ162 | ζ166 | ζ1614 | -1 | -1 | -1 | ζ167 | ζ16 | ζ1613 | ζ165 | ζ1611 | ζ163 | ζ1615 | ζ169 | linear of order 16 |
ρ14 | 1 | -1 | -i | i | 1 | 1 | 1 | ζ1610 | ζ162 | ζ166 | ζ1614 | -1 | -1 | -1 | ζ1615 | ζ169 | ζ165 | ζ1613 | ζ163 | ζ1611 | ζ167 | ζ16 | linear of order 16 |
ρ15 | 1 | -1 | -i | i | 1 | 1 | 1 | ζ162 | ζ1610 | ζ1614 | ζ166 | -1 | -1 | -1 | ζ1611 | ζ1613 | ζ169 | ζ16 | ζ1615 | ζ167 | ζ163 | ζ165 | linear of order 16 |
ρ16 | 1 | -1 | -i | i | 1 | 1 | 1 | ζ162 | ζ1610 | ζ1614 | ζ166 | -1 | -1 | -1 | ζ163 | ζ165 | ζ16 | ζ169 | ζ167 | ζ1615 | ζ1611 | ζ1613 | linear of order 16 |
ρ17 | 8 | 8 | 0 | 0 | 3 | -2 | -2 | 0 | 0 | 0 | 0 | 3 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C52⋊C8 |
ρ18 | 8 | 8 | 0 | 0 | -2 | -2 | 3 | 0 | 0 | 0 | 0 | -2 | -2 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C52⋊C8 |
ρ19 | 8 | 8 | 0 | 0 | -2 | 3 | -2 | 0 | 0 | 0 | 0 | -2 | 3 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C52⋊C8 |
ρ20 | 8 | -8 | 0 | 0 | -2 | 3 | -2 | 0 | 0 | 0 | 0 | 2 | -3 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
ρ21 | 8 | -8 | 0 | 0 | 3 | -2 | -2 | 0 | 0 | 0 | 0 | -3 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
ρ22 | 8 | -8 | 0 | 0 | -2 | -2 | 3 | 0 | 0 | 0 | 0 | 2 | 2 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
(1 34 75 60 17)(2 76 18 35 61)(3 62 36 19 77)(4 37 78 63 20)(5 21 64 79 38)(6 49 39 22 80)(7 65 23 40 50)(8 24 51 66 41)(9 42 67 52 25)(10 68 26 43 53)(11 54 44 27 69)(12 45 70 55 28)(13 29 56 71 46)(14 57 47 30 72)(15 73 31 48 58)(16 32 59 74 33)
(1 60 34 17 75)(2 61 35 18 76)(3 19 62 77 36)(4 20 63 78 37)(5 79 21 38 64)(6 80 22 39 49)(7 40 65 50 23)(8 41 66 51 24)(9 52 42 25 67)(10 53 43 26 68)(11 27 54 69 44)(12 28 55 70 45)(13 71 29 46 56)(14 72 30 47 57)(15 48 73 58 31)(16 33 74 59 32)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
G:=sub<Sym(80)| (1,34,75,60,17)(2,76,18,35,61)(3,62,36,19,77)(4,37,78,63,20)(5,21,64,79,38)(6,49,39,22,80)(7,65,23,40,50)(8,24,51,66,41)(9,42,67,52,25)(10,68,26,43,53)(11,54,44,27,69)(12,45,70,55,28)(13,29,56,71,46)(14,57,47,30,72)(15,73,31,48,58)(16,32,59,74,33), (1,60,34,17,75)(2,61,35,18,76)(3,19,62,77,36)(4,20,63,78,37)(5,79,21,38,64)(6,80,22,39,49)(7,40,65,50,23)(8,41,66,51,24)(9,52,42,25,67)(10,53,43,26,68)(11,27,54,69,44)(12,28,55,70,45)(13,71,29,46,56)(14,72,30,47,57)(15,48,73,58,31)(16,33,74,59,32), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)>;
G:=Group( (1,34,75,60,17)(2,76,18,35,61)(3,62,36,19,77)(4,37,78,63,20)(5,21,64,79,38)(6,49,39,22,80)(7,65,23,40,50)(8,24,51,66,41)(9,42,67,52,25)(10,68,26,43,53)(11,54,44,27,69)(12,45,70,55,28)(13,29,56,71,46)(14,57,47,30,72)(15,73,31,48,58)(16,32,59,74,33), (1,60,34,17,75)(2,61,35,18,76)(3,19,62,77,36)(4,20,63,78,37)(5,79,21,38,64)(6,80,22,39,49)(7,40,65,50,23)(8,41,66,51,24)(9,52,42,25,67)(10,53,43,26,68)(11,27,54,69,44)(12,28,55,70,45)(13,71,29,46,56)(14,72,30,47,57)(15,48,73,58,31)(16,33,74,59,32), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80) );
G=PermutationGroup([[(1,34,75,60,17),(2,76,18,35,61),(3,62,36,19,77),(4,37,78,63,20),(5,21,64,79,38),(6,49,39,22,80),(7,65,23,40,50),(8,24,51,66,41),(9,42,67,52,25),(10,68,26,43,53),(11,54,44,27,69),(12,45,70,55,28),(13,29,56,71,46),(14,57,47,30,72),(15,73,31,48,58),(16,32,59,74,33)], [(1,60,34,17,75),(2,61,35,18,76),(3,19,62,77,36),(4,20,63,78,37),(5,79,21,38,64),(6,80,22,39,49),(7,40,65,50,23),(8,41,66,51,24),(9,52,42,25,67),(10,53,43,26,68),(11,27,54,69,44),(12,28,55,70,45),(13,71,29,46,56),(14,72,30,47,57),(15,48,73,58,31),(16,33,74,59,32)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)]])
Matrix representation of C52⋊C16 ►in GL8(𝔽241)
0 | 240 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 240 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 240 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 240 | 0 | 0 | 0 | 0 | 0 | 0 |
97 | 34 | 104 | 240 | 0 | 0 | 0 | 1 |
119 | 54 | 88 | 24 | 240 | 240 | 240 | 240 |
97 | 34 | 104 | 240 | 1 | 0 | 0 | 0 |
97 | 34 | 104 | 240 | 0 | 1 | 0 | 0 |
240 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
240 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
240 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
240 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
130 | 145 | 200 | 40 | 0 | 0 | 1 | 0 |
130 | 145 | 200 | 40 | 0 | 0 | 0 | 1 |
152 | 165 | 184 | 65 | 240 | 240 | 240 | 240 |
130 | 145 | 200 | 40 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 240 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 240 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 240 | 0 | 0 | 1 |
22 | 20 | 225 | 25 | 239 | 240 | 240 | 240 |
125 | 42 | 53 | 4 | 33 | 144 | 240 | 40 |
2 | 220 | 192 | 140 | 33 | 144 | 240 | 40 |
141 | 115 | 103 | 17 | 33 | 144 | 240 | 40 |
52 | 233 | 40 | 156 | 33 | 144 | 240 | 40 |
G:=sub<GL(8,GF(241))| [0,0,0,1,97,119,97,97,240,240,240,240,34,54,34,34,1,0,0,0,104,88,104,104,0,1,0,0,240,24,240,240,0,0,0,0,0,240,1,0,0,0,0,0,0,240,0,1,0,0,0,0,0,240,0,0,0,0,0,0,1,240,0,0],[240,240,240,240,130,130,152,130,1,0,0,0,145,145,165,145,0,1,0,0,200,200,184,200,0,0,1,0,40,40,65,40,0,0,0,0,0,0,240,1,0,0,0,0,0,0,240,0,0,0,0,0,1,0,240,0,0,0,0,0,0,1,240,0],[0,0,0,22,125,2,141,52,0,0,0,20,42,220,115,233,0,0,0,225,53,192,103,40,0,0,0,25,4,140,17,156,240,240,240,239,33,33,33,33,1,0,0,240,144,144,144,144,0,1,0,240,240,240,240,240,0,0,1,240,40,40,40,40] >;
C52⋊C16 in GAP, Magma, Sage, TeX
C_5^2\rtimes C_{16}
% in TeX
G:=Group("C5^2:C16");
// GroupNames label
G:=SmallGroup(400,116);
// by ID
G=gap.SmallGroup(400,116);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-5,5,12,31,50,10564,490,496,9797,2891,2897]);
// Polycyclic
G:=Group<a,b,c|a^5=b^5=c^16=1,a*b=b*a,c*a*c^-1=a*b^2,c*b*c^-1=a*b^-1>;
// generators/relations
Export
Subgroup lattice of C52⋊C16 in TeX
Character table of C52⋊C16 in TeX